高一数学必修1知识点总结--集合与函数
高中数学必修1知识点总结
第一章 集合与函数概念
【1.1.1】集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法
N表示自然数集,N 或N 表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.
(3)集合与元素间的关系
对象a与集合M的关系是a M,或者a M,两者必居其一. (4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:x把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x具有的性质},其中为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集( ).
【1.1.2】集合间的基本关系
(6)子集、真子集、集合相等
n
n
n
n
(7)已知集合A有n(n 1)个元素,则它有2个子集,它有2 1个真子集,它有2 1个非空子集,它有2 2非空真子集.
【1.1.3】集合的基本运算
(8)交集、并集、补集
(1(2)一元二次不等式的解法
〖1.2〗函数及其表示 【1.2.1】函数的概念
(1)函数的概念
①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:A B.
②函数的三要素:定义域、值域和对应法则.
③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法
①设a,b是两个实数,且a b,满足a x b的实数x的集合叫做闭区间,记做[a,b];满足a x b的实数x的集合叫做开区间,记做(a,b);满足a x b,或a x b的实数x的集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x a,x a,x b,x b的实数x的集合分别记做[a, ),(a, ),( ,b],( ,b). 注意:对于集合{x|a x b}与区间(a,b),前者a可以大于或等于b,而后者必须
a b.
(3)求函数的定义域时,一般遵循以下原则:
①f(x)是整式时,定义域是全体实数.
②f(x)是分式函数时,定义域是使分母不为零的一切实数.
③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤y tanx中,x k
2
(k Z).
⑥零(负)指数幂的底数不能为零.
⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.
⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a g(x) b解出.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值
求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:
①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数y f(x)可以化成一个系数含有y的关于x的二次方程a(y)x2 b(y)x c(y) 0,则在
a(y) 0时,由于x,y为实数,故必须有 b2(y) 4a(y) c(y) 0,从而确定函数的值域或最值.
④不等式法:利用基本不等式确定函数的值域或最值.
⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的
最值问题.
⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.
【1.2.2】函数的表示法
(5)函数的表示方法
表示函数的方法,常用的有解析法、列表法、图象法三种.
解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关
系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念
①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作
f:A B.
②给定一个集合A到集合B的映射,且a A,b B.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.
〖1.3〗函数的基本性质
【1.3.1】单调性与最大(小)值
(1)函数的单调性
①定义及判定方法
减函数减去一个增函数为减函数.
③对于复合函数y f[g(x)],令u g(x),若y f(u)为增,则y f[g(
x)]为增;若y f
(u)u g(x)为增,为减,则
y f[g(x)]为增;若
y f(u)为增,则y f[g(x)]为减;若y f(u)u g(x)为减,u g(x)为减,为减,u g(x)为增,则y f[g(x)]为减. (2)打“√”函数f(x) x
y
a
(a 0)的图像与性质 x
f(x)分别在( ,、 )上为增函数,分别在[、
上为减函数.
(3)最大(小)值定义
①一般地,设函数y f(x)的定义域为I,如果存在实数M满足:(1)
对于任意的x I,都有f(x) M;
(2)存在x0 I,使得f(x0) M.那么,我们称M是函数f(x
)
的最大值,记作fmax(x) M.
②一般地,设函数y f(x)的定义域为I,如果存在实数m满足:(1)对于任意的x I,都有f(x) m;(2)存在x0 I,使得f(x0) m.那么,我们称m是函数f(x)的最小值,记作fmax(x) m.
o
x
【1.3.2】奇偶性
(4)函数的奇偶性
②若函数f(x)为奇函数,且在x 0处有定义,则f(0) 0.
③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.
④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.
〖补充知识〗函数的图象
(1)作图
利用描点法作图:
①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:
要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.
①平移变换
h 0,左移h个单位k 0,上移k个单位
y f(x) y f(x h)y f(x) y f(x) k
h 0,右移|h|个单位k 0,下移|k|个单位
②伸缩变换
0 1,伸
y f(x) y f( x) 1,缩0 A 1,缩y f(x) y Af(x) A 1,伸
③对称变换
y轴x轴y f(x) …… 此处隐藏:5143字,全部文档内容请下载后查看。喜欢就下载吧 ……
相关推荐:
- [行业范文]美好的法语句子
- [行业范文]描写露珠的句子
- [行业范文]精彩禅语句子图片
- [行业范文]关于满嘴谎言的句子
- [行业范文]关于安静的句子48句
- [行业范文]关于小河的句子
- [行业范文]描写稻田的句子
- [行业范文]思念好朋友的句子
- [行业范文]赞美雪的句子
- [行业范文]早上激励人心的句子
- [行业范文]失恋忧伤的句子
- [行业范文]努力积极向上的句子
- [行业范文]对工作心灰意冷的句子
- [行业范文]失恋让人心疼的句子
- [行业范文]描写珍惜青春的句子
- [行业范文]表达思念的句子简短
- [行业范文]关于父爱的句子范例
- [行业范文]浪漫的英语句子
- [行业范文]关于周末的句子
- [行业范文]思念牵挂的句子
- 有关感恩班会课件简短(二篇)(感恩班会
- 2025年初二下乡军训心得体会800字(15篇
- 关于新员工培训方案汇编(关于新员工培
- 精选高考生寒假学习计划书(精)(高考生
- 毕业实训报告心得体会(3篇)(实训报告心
- 银行工作感悟及心得范文怎么写(四篇)(
- 精选领导干部个人政治画像报告通用(七
- 精选超市11.11活动促销方案(精品超市品
- 2025年怎么做自我介绍汇总(5篇)(至2025
- 最新企业错峰生产方案(26篇)(山西企业
- 最新暑期三下乡社会实践调研报告范本(
- 最新幼儿园大班教育教学总结怎么写(最
- 最新教师节主持词小学(优秀9篇)(教师节
- 关于小学安全教育教学方案(推荐)(关于
- 员工信模板范文怎么写(五篇)(员工信息
- 最新保险销售离职申请书(十六篇)(最新
- 最新XX小学防校园欺凌工作方案怎么写(2
- 有关特岗教师辞职信范文(推荐)(特岗教
- 精选党的建设工作要点简短(党的建设的
- 如何写安康杯竞赛活动总结汇总(4篇)(安




