初一数学小结大全(2)
10、有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘。
(2)任何数同零相乘都得零。
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
11、有理数乘法的运算律:
(1)乘法的交换律:ab=ba。
(2)乘法的结合律:(ab)c=a(bc)。
(3)乘法的分配律:a(b+c)=ab+ac。
12、有理数除法法则:除以一个数等于乘以这个数的倒数。(注意:零不能做除数)
13、有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数。注意:当n为正奇数时: (-a)=-a或(a -b)=-(b-a) , 当n为正偶数时: (-a) =a
14、乘方的定义:
(1)求相同因式积的运算,叫做乘方。
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂。
(3)a是重要的非负数,即a≥0;若a+|b|=0 ,则a=0,b=0。
(4)底数的小数点移动一位,平方数的小数点移动二位。
15、科学记数法:
把一个大于10的数记成a310的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
16、近似数的精确位:
一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。
17、有效数字:
从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
18、混合运算法则:
先乘方,后乘除,最后加减。注意:怎样算简单,怎样算准确,是数学计算的最重要的原则。
19、特殊值法:
是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明。 n222nnnnnn或 (a-b)=(b-a) 。 nn
整式的加减
1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。
2、单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
3、多项式:几个单项式的和叫多项式。
4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax+bx+c和x+px+q是常见的两个二次三项式。
5、整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。
6、同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。
7、合并同类项法则:系数相加,字母与字母的指数不变。
8、去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。
9、整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。
10、多项式的升幂和降幂排列:
把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。
22
一元一次方程
1、等式与等量:用“=”号连接而成的式子叫等式。注意:“等量就能代入”。
2、等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。
3、方程:含未知数的等式,叫方程。
4、方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。
5、移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1。
6、一元一次方程:
只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
7、一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0)。
8、一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0)。
9、一元一次方程解法的一般步骤:
整理方程 — 去分母 — 去括号 — 移项 — 合并同类项 — 系数化为1 —(检验方程的解)。
10.列一元一次方程解应用题:
(1)读题分析法:多用于“和,差,倍,分问题”。
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套等”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。
(2)画图分析法:多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
11、列方程解应用题的常用公式:
(1)行程问题:距离=速度2时间
(2)工程问题:工作量=工效2工时
(3)比率问题:部分=全体2比率
(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题:售价=定价2折;利润=售价-成本, ;
(6)周长、面积、体积问题:C圆=2πR,S圆=πR,C长方形=2(a+b),S长方形=ab, C
正方形2=4a,
S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥= πR2h。
(初一下学期)
二元一次方程组
1、二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程。
(注意:一般说二元一次方程有无数个解)
2、二元一次方程组:两个二元一次方程联立在一起是二元一次方程组。
3、二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解。注意:一般说二元一次方程组只有唯一解(即公共解)。
4、二元一次方程组的解法:
(1)代入消元法
(2)加减消元法
(3)注意:判断如何解简单是关键。
5、二元一次方程组的应用:
(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较
篇三:初一数学上册知识点总结
初一数学上册知识点总结
(一)有理数及其运算复习
一、有理数的基础知识
1、三个重要的定义:
(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数. 2、有理数的分类: (1)按定义分类: ??
?整数?
有理数?
?
?分数??
?正整数??0?
?负整数?正分数?
?负分数
(2)按性质符号分类:
?
?正有理数??
有理数?0
?
?负有理数??
?正整数?
?正分数
?负整数?
?负分数
3、数轴
相关推荐:
- [初中作文]初一学生暑假学习计划范本
- [初中作文]我的老师初一作文700字
- [初中作文]我的初一生活
- [初中作文]初一学生暑假学习计划范本
- [初中作文]初一作文丑小鸭和我
- [初中作文]初一寒假日记500字
- [初中作文]初一开学第一周周记500字
- [初中作文]母亲的爱初一作文600字
- [初中作文]成长的烦恼初一作文
- [初中作文]初一家长会班主任发言稿
- [初中作文]初一作文
- [初中作文]大年初一作文400字
- [初中作文]初一《繁星·春水》复习提纲(资料)
- [初中作文]大年初一日记100字精选3篇
- [初中作文]初一周记300字写事
- [初中作文]初一班主任寄语
- [初中作文]初一学习目标怎么写
- [初中作文]初一第一次月考数学试卷分析
- [初中作文]初一学生英语小报图片
- [初中作文]大年初一禁忌
- 爱无处不在初中议论文800字
- 关于台阶的初中议论文800字
- 初中生答案在风中飘荡创新作文800字
- 初中作文小飞侠彼得潘读后感200字(共9
- 初中寒假计划作文400字
- 初中日记350字左右
- 初中关于扬起自信的风帆作文300字:扬
- 开学的感想周记初中200字作文(汇总25篇
- 晒晒我们班的牛人初中作文800字三篇
- 暑假打工记作文600字初二(严选24篇)
- 周记最难忘的一个老师600字初中作文(赏
- 读书的初中作文550字
- 我最什么的一个人的作文600字初中作文(
- 伴着挫折出发初中议论文400字
- 初中记叙文:有趣的童年400字
- 窗外作文550字初二写景秋天(推荐8篇)
- 中考热点作文题目(赏析9篇)
- 坚强之花作文800字初三记叙文(优选11篇
- 最新初中作文400字左右 初中作文写作方
- 我的家里欢乐多作文600字初中(共12篇)




